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Abstract 

Background: Extensive clinical evidence suggests that a preventive screening of coronary heart disease (CHD) at an 
earlier stage can greatly reduce the mortality rate. We use 64 two-dimensional speckle tracking echocardiography 
(2D-STE) features and seven clinical features to predict whether one has CHD.

Methods: We develop a machine learning approach that integrates a number of popular classification methods 
together by model stacking, and generalize the traditional stacking method to a two-step stacking method to 
improve the diagnostic performance.

Results: By borrowing strengths from multiple classification models through the proposed method, we improve the 
CHD classification accuracy from around 70–87.7% on the testing set. The sensitivity of the proposed method is 0.903 
and the specificity is 0.843, with an AUC of 0.904, which is significantly higher than those of the individual classifica-
tion models.

Conclusion: Our work lays a foundation for the deployment of speckle tracking echocardiography-based screening 
tools for coronary heart disease.

Keywords: Ensemble learning, Machine learning, Speckle tracking echocardiography, Coronary heart disease, 
Classification
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Background
Coronary heart disease (CHD) is a global epidemic. It 
led to around 18 million (roughly one-third of ) deaths 
worldwide in the year 2016 [1–4]. Preventive screening 
of CHD at an earlier stage can significantly reduce the 
mortality rate, improve the prognosis, and provide thera-
peutic guidance for patients [5]. Despite urgent needs, an 

efficient and effective screening procedure is still lacking. 
The majority of CHD diagnostic procedures are radiol-
ogy-based approaches such as the computed tomogra-
phy angiography (CTA) and the coronary angiography 
(CA). These methods can directly visualize the coronary 
artery and quantify the level of artery occlusion. As a 
result, these methods are considered the gold standard 
for diagnosis. Though the radiology-based methods are 
fairly effective in the CHD diagnosis, their applications 
in preventive practice are severely limited by the high 
operational cost, the requirement of expensive and high-
maintenance equipment, the need for experienced medi-
cal staffs, and potential side effects [6].
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A much less explored alternative is the echocardiogra-
phy-based diagnosis methods, which are commonly used 
to visualize the movements of the myocardium. In fact, 
clinical practice suggests that some echocardiology-based 
techniques, such as the two-dimensional speckle track-
ing echocardiography (2D-STE) [7], can indeed prog-
nosticate CHD. Accumulating evidence shows that some 
dynamic features extracted by the 2D-STE, such as the 
global longitudinal strain [8] and the time-to-peak strain 
change, differ significantly between CHD patients and 
non-CHD patients [9]. These observations suggest that 
the 2D-STE holds a new promise for the CHD screening 
[10]. However, effective assessment models that can sin-
gle out early-stage CHD patients with adequate sensitivi-
ties and specificities are still lacking. It remains unknown 
which set of echocardiography-based features can effec-
tively quantify the significance of the myocardial change 
in response to a minor myocardial anomaly. The require-
ment of the laboratory-based practice, as opposed to the 
in-field and real-time analysis, limits their utility for the 
large-scale population practice.

The rapid development of machine learning (includ-
ing computer vision) techniques has triggered a medical 
technology revolution. For example, the first clinical-
grade computational pathology algorithm was proposed 
in [11] for the diagnosis of three types of cancers with 
an average accuracy of 98%. In recent years, machine 
learning methods were applied to processing images of 
echocardiograms. These methods, such as convolutional 
neural networks (CNNs), can help extract image struc-
tures and features that are valuable in diagnosis [12–14]. 
For example, CNNs are trained to automatically classify 
views of echocardiograms, and to extract features from 
echocardiograms to detect certain diseases [15, 16]. 
Besides the applications in image segmentation and inter-
pretation, machine learning methods are also expected 
to play a pivotal role in assisting highly skilled person-
nel in disease diagnosis by utilizing a series of quantita-
tive, reproducible, and multiplexed features extracted 
from large amounts of clinical practice. Machine learning 
methods can capture the potential connection between 
the features and the diagnosis. For example, in [17], the 
majority voting method [18] is applied in distinguish-
ing the hypertrophic cardiomyopathy from physiological 
hypertrophy in athletes using expert-annotated speckle-
tracking echocardiographic features.

In this article, we aim to develop a machine learning 
method that takes echocardiographic features as input 
and classifies whether the subject has CHD. There are 
many machine learning methods that can be employed 
to develop a classification method. Existing classification 
methods have various underlying model assumptions, 
which hold the key to the success of the methods. When 

the data is highly heterogeneous and noisy, as is the case 
for the echocardiographic data that we analyze, it is not 
clear which method is suitable as the underlying assump-
tions are usually hard to validate. Furthermore, no single 
classification method provides satisfactory prediction 
results.

To improve the classification performance, we inte-
grate 14 classification methods together by an ensemble 
learning method to provide the best prediction. Through 
the ensemble learning method, we thus aggregate the 
strength of all 14 individual classifiers to build the final 
prediction model. In particular, we generalize the tradi-
tional stacking method to a two-step stacking method. 
The first-step stacking can improve the individual predic-
tion by aggregating diversified classifiers; by randomly 
partitioning the training set multiple times for the sec-
ond-step stacking, we can reduce the classification errors 
caused by wrong model aggregation, and weaken the 
effects of the poor performance of individual classifiers.

Methods
In this section, we first present the data used in our study, 
then briefly review the machine learning applications 
in echocardiographic analysis and the ensemble learn-
ing methods, and finally propose the two-step stacking 
method.

Human subjects
Our study was a retrospective study based on the clini-
cal trial (NCT03905200). From March 1, 2019 to August 
30, 2019, 555 patients were admitted for coronary angi-
ography as suspicious CHD patients. Patients older than 
18 were enrolled with written consents. The documen-
tary evidence can be provided if required. We excluded 
patients with non-sinus rhythms, severe heart dis-
eases other than CHD, or other extremely severe organ 
illnesses.

The echocardiograms were recorded by one experi-
enced clinician on a GE Vivid E9 system (GE Medical 
Systems, Horten, Norway). Patients’ images were stored 
in the same machine. Images were transported to an 
offline EchoPac system of version 201 (GE Healthcare, 
Horten, Norway), and were further analyzed by an expe-
rienced investigator. We then excluded patients with low-
quality images that EchoPac has troubles in processing.

The study has been performed in accordance with the 
Declaration of Helsinki, and was approved by the Ethics 
Committee of the Beijing Hospital.

Data and features
There were 555 patients examined by a CA or a coro-
nary CTA. Among the 555 patients, 424 of them had an 
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echocardiography one day before the angiography was 
conducted. Patients with vessel stenosis of at least 50% 
in the major coronary artery or at least one of its main 
branches were considered as CHD positive patients [19]. 
Based on such criteria, 217 of those 424 patients are 
CHD positive.

For each patient, the recorded echocardiography con-
sists of three parasternal short-axis standard sections: 
the mitral valve section, the papillary muscle section, and 
the apical section, as well as three standard apical sec-
tions: the four-chamber view section, the two-chamber 
view section, and the longitudinal long-axis view sec-
tion. The left ventricular wall (LVW) is divided into 17 
segments based on the standard American Heart Asso-
ciation (AHA) 17-segment model [20], each of which 
has been analyzed individually. Peak systolic longitudi-
nal and radial strains are assessed in all 17 segments to 
quantify the shortening and thickening of the myocar-
dium for each segment, respectively. The epicardium and 
endocardium of the left ventricle (LV) are traced auto-
matically and adjusted manually if necessary at the end-
systole. The mid-myocardial border is determined at the 
midpoints between the endocardial and the epicardial 
borders. The regions of interest (ROIs) cover the endo-
cardium, the myocardium, and the epicardium. The ROIs 
have been locally adjusted if they are off-track.

In the 2D-STE echocardiography, the most important 
parameter is the strain, which quantifies the deformation 
of the myocardium by recording the contractions. Since 
the ventricular contractile dysfunction occurs prior to 
the electrocardiogram (ECG) change in the sub-endocar-
dium, the diagnostic accuracy based on strains tends to 

be higher than ECG, troponin, and GRACE score [21]. 
The longitudinally orientated myocardial fibers are the 
most susceptible to ischemia [8, 22]. Therefore, the global 
longitudinal strain has been recommended as the index 
with the top priority in diagnosing cardiac diseases [23, 
24]. It is shown in [25] that the GLPS can successfully 
predict CHD (AUC=0.92) for patients with non-ST-seg-
ment elevation acute coronary syndromes (NSTE-ACS). 
In the myocardium, micro-vascular communications are 
network structured. The communication can form some 
dual arterial perfusion zones. Simply relying on one sin-
gle index might be inaccurate to decide the etiology. The 
assessment of myocardium ischemia can be measured by 
the global longitudinal strain, the global radio strain, the 
peak systolic strain (PSS), the systolic strain rate (SSR), 
time to peak (TP), and specific layer strains [26, 27]. The 
myocardium usually consists of three heterogeneous lay-
ers of muscle fibers [28]. Layer-specific strain is associ-
ated with coronary artery disease independently[26]. 
Layer-specific analyses of endocardial, mid-myocardial, 
and epicardial strains are performed in GLPS as well as 
the radial strain in the three parasternal short-axis stand-
ard sections.

Data pre‑processing
As shown in Table 1, we consider 71 features as our pre-
dictors for building a machine learning model to predict 
the risk of CHD, including 64 strain-based numerical 
features from 2D-STE, age, gender, and five categori-
cal features indicating common risk factors for coronary 
heart disease. According to [29], obesity is also a com-
mon risk factor for coronary heart disease. However, 

Table 1 Features chosen to be predictors in CHD prediction model

2D‑STE features
Peak systolic strain (PSS) 17 segments

Longitudinal strain Rate of systolic strain (SSR) 17 segments

(mid-layer) Time-to-peak (TP) 17 segments

Mitral valve level (MV) 3 layers (ENDO/MID/EPI)

Global strain (GS) Papillary muscle level (PM) 3 layers

for radio Apical level (AP) 3 layers

Global longitudinal peak strain (GLPS) 3 layers (ENDO/MID/EPI)

Peak standard deviation (PSD)

Clinic features
Age (integer)

Gender (M/F)

Hypertension (Y/N)

Diabetes (Y/N)

Hyperlipemia (Y/N)

Smoke (Y/N)

Family history (Y/N)
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since the study is a retrospective study, obesity has not 
been recorded when collecting data. Due to the high cor-
relation between obesity, diabetes, hypertension and, 
hyperlipidemia [30], we include diabetes, hypertension, 
and hyperlipidemia instead. The other two risk factors we 
consider are family history and smoking. The summary 
of the clinical characteristics of the subjects is shown in 
Table  2, including age, body mass index (BMI), systolic 
blood pressure (SBP), diastolic blood pressure (DBP), 
heart rate, gender, hypertension, diabetes, hyperlipi-
demia, family history, and smoking. From the data sum-
mary, we can see that most of the clinical characteristics 
are balanced between the case group (patients with CHD 
positive) and the control group (patients with CHD nega-
tive). However, we observe a significant increase in the 
proportion of smoking subjects in the case group when 
compared with the control group. This observation sup-
ports the intuition that smoking is a common risk factor 
for coronary heart disease. For the 64 numerical features 
from 2D-STE, we compare the differences of each feature 
between the case group and the control group through 
the two-sample t-test [31]. The testing results show how 
significantly CHD can have impacts on each feature. To 
reduce the dimension of features, we apply the principal 
component analysis (PCA) [32] on the 17 segments of 
PSS, SSR, and TP.

Machine learning in echocardiographic analysis
Machine learning methods have been widely applied 
in fields of echocardiographic analysis [16, 17, 33–38]. 
Recently, most of the applications of the machine 
learning methods on echocardiogram focus on image 
segmentation and interpretation [16, 35, 36]. The meth-
ods can learn the shape and size of the region of inter-
est from a labeled training set [39–46]. For example, 
machine learning methods are applied to analyzing the 

cardiac structures, such as determining global features 
that can be used to identify standard views of echocar-
diograms [15], extracting hidden features to detect 
heart diseases such as hypertrophic cardiomyopathy 
[16], identifying certain local structures like pacemaker 
lead [36], and recognizing the boundaries of ventricle 
and atrium [35, 36]. Based on the extracted features, 
[36] shows that the machine learning method can iden-
tify severely dilated left atrium and left ventricular 
hypertrophy, estimate right atrium major axis length 
and left atrial volume, and predict patient age, gender, 
weight, and height. These studies support the hypothe-
sis that machine learning methods can play a promising 
role in accelerating the image-based diagnostic process. 
The advantage of applying machine learning methods in 
analyzing medical images lies in the fact that machine 
learning methods can not only identify features that 
can be manually recognized, but also extract hidden-
layer features that may be difficult to identify [17, 33, 
34]. In this paper, we apply machine learning methods 
on the strain-based local features of the 17 segments 
as well as the clinical features to link these features to 
the diagnosis of CHD through the hidden interactions. 
More specifically, we use machine learning methods to 
integrate those features through a data-driven diagnos-
tic system built up by classification models and ensem-
ble learning.

Ensemble learning and two‑step stacking
When taking echocardiographic features as input to 
classify whether the patient has CHD, individual classi-
fiers may not provide satisfactory results, as the echo-
cardiographic data is highly heterogeneous and noisy 
[47]. We thus consider multiple classifiers and apply the 
ensemble learning method to aggregate the strength of 
all these classifiers to obtain a more precise result [47]. 
More specifically, we apply the stacking method in this 
work, since stacking is particularly popular when the 
signal-to-noise ratio of the data is low [48, 49]. The gen-
eral idea of the stacking is similar to the “majority vot-
ing” [18]. To illustrate the stacking method, we thus first 
look at the majority voting method. Suppose there are L 
pre-trained classifiers. For one testing data, each classi-
fier gives one classification result cl , for l = 1, ..., L . When 
applying majority voting, one can obtain a final classifica-
tion result cf  as follows,

(1)cf = 1

(

1

L

L
∑

l=1

cl ≥ 0.5

)

,

Table 2 Summary of clinical characteristics of the subjects

CHD positive ( n = 217) CHD negative ( n = 207)

Age(years) 64.39± 9.79 64.11± 9.52

BMI ( kg/m2) 25.74± 3.36 25.56± 3.75

DBP 77.75± 11.02 79.52± 11.78

SBP 135.83± 17.56 134.89± 16.49

Heart Rate 75.09± 11.03 75.70± 13.32

Male 76.50% 74.32%

Hypertension 66.2% 67.8%

Diabetes 30% 41.74%

Hyperlipemia 72.6% 68.6%

Smoke 52.5% 28%

Family history 36.1% 32.5%
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where 1(·) is an indicator function, or a characteristic 
function, which equals one if the inequality holds and 
zero otherwise.

In (1), the L classifiers have equal weights. One can 
generalize the majority voting to the weighted voting 
[50],

where wl is the weight for classifier l, l = 1, . . . , L . Stack-
ing is a generalized weighted voting method. In stacking, 
the weights w1 through wL are trained on a validation set 
through another layer of learning algorithm, with the 
predictions of the L classifiers on such validation set as 
the inputs. For example, the “weights” can be estimated 
through a linear regression by minimizing the least 
square errors. Notice that in stacking, the “weights” are 
estimated by learning algorithms that can be rather com-
plex. As a result, the “weights” may be negative [51]. In 
this study, we apply the random forest algorithm [52] to 
estimate the stacking weights.

As illustrated in (1) and (2), we can see that in ensemble 
learning methods, the basic idea is to combine a number 
of classifiers or learners. Some of the individual learners 
may be just slightly better than random guesses, thus the 
individual learners are also referred to as “weak learners”. 
Through some combination, the predicting power can be 
improved, then the ensemble is called a “strong learner” 
[53, 54]. In ensemble learning, the fundamental issue is 
the diversity of the “weak learners” [47]. It is expected 
that we will not gain much from the combination if 
there are not many differences between the weak learn-
ers. In other words, the combination of highly correlated 
weak learners may still result in a weak learner with little 
improvement. In ensemble learning, the model diversity 
plays a more important role than the model accuracy of 
the individual model. As a result, combining individual 
models with high accuracy, and those with accuracy rela-
tively low always performs better than only combining 
the accurate ones [47]. However, if some individual mod-
els are quite poor, they may degrade the performance 
of the combination. Thus how to balance the model 
diversity and individual accuracy is quite challenging in 
ensemble learning [47, 54]. In our study, We consider dif-
ferent classes of models vary from traditional parametric 
model such as logistic regression to the state-of-art learn-
ing process such as the neural network. Furthermore, 
we generalize the classic stacking method to a two-step 
stacking method to achieve a trade-off between diver-
sity and accuracy. Specifically, in the first step, we train 
individual classifiers c(k)l , l = 1, . . . , L and the weights 
w
(k)
l , l = 1, . . . , L on the kth randomly sampled training 

(2)cf = 1

(

L
∑

l=1

wlcl ≥ 0.5

)

,

data. In this step, we have classifiers with multiple levels 
of performance included to expand the model diversity. 
We repeat this process K times, and denote

In the second step, we further stack the K classifi-
cation results c∗k , k = 1, . . . ,K  through the weights 
w∗

k , k = 1, . . . ,K  trained on the validation data. The 
second step then can weaken the effects of the poor 
performance of individual classifiers and reduce the clas-
sification errors caused by wrong model aggregation in 
the first step. We then get the final classifier,

In particular, as shown in Fig.  1, we set 15% of the 424 
subjects as the testing set. Among the remaining 85% 
subjects, we then set 20% as the validation set and the 
remaining as the training set for the second-step stack-
ing. For the first-step stacking, we also set 20% of the sub-
jects as the validation set. More specifically, we divide the 
424 subjects into a testing set that contains 64 subjects, a 
training set that contains 288 subjects, and a validation 
set that contains 72 subjects. For the first step stacking, 
we repeatedly sample 230 individuals randomly from the 
training set as the first-step training set to train the clas-
sifiers c(k)l  s in Eq. (3), and use the rest of 58 subjects as 
the first-step validation set to train the stacking weights 
w
(k)
l  s in Eq. (3). In this paper, we build 14 classifiers using 

14 machine learning approaches, i.e. L = 14 . We repeat 
the process 10 times, i.e., K = 10 , so that we obtain 10 
classifiers for the second step stacking. The second-step 
stacking weights w∗

k s in Eq. (4) are trained on the pre-
determined validation set of size 72. To avoid the effects 
brought by the imbalance of labels through random split-
ting, we apply the stratify splitting to split the dataset 
based on the labels so that in each sub-sample, the CHD 
negative-to-positive ratio remains similar.

Results
Two‑sample t‑test on features
We compare the differences of GLPS’s between the case 
group and the control group in three layers of the myo-
cardium using a two-sample t-test. We record the p val-
ues for the testing. Note that a small p value indicates a 
significant difference. In this study, we use the threshold 
p value ≤ 0.05 to determine if the difference is significant. 
Intuitively, we claim that the CHD has a greater effect 
on a feature if the difference of such feature between the 

(3)c∗k = 1

(

L
∑

l=1

w
(k)
l c

(k)
l ≥ 0.5

)

, k = 1, . . . ,K .

(4)cstacking = 1

(

K
∑

k=1

w∗

k c
∗

k ≥ 0.5

)

.
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case group and the control group is more significant. The 
p values for the two-sample t-test on GLPS’s are shown 
in Table 3. The results confirm that CHD has significant 
effects on GLPS values. We also conduct the two-sample 
t-test on PSS, SSR, and TP. From the testing results, we 
can see that PSS, SSR, and TP are also important fea-
tures for CHD prediction. When considering the radial 
strains, the two-sample test results for the radial strains 
in the apical section (SAX-AP), the papillary muscle sec-
tion (SAX-PM), and the mitral valve section (SAX-MV) 
indicate that the radial strain contributes less than the 
longitudinal strain in CHD prediction (the p values are all 
listed in Table 3).

Principal component analysis
We first study the correlations among the numeri-
cal features. Panel (A) in Fig. 2 shows the correlations 
between global longitudinal strains and radial strains. 
We can see that longitudinal strains are weakly cor-
related with radial strains. For radial strains, each sec-
tion is weakly correlated with each other. Panel (B) in 
Fig.  2 shows the correlations among 17 segments on 
PSS, SSR and TP. From the correlation matrix, we can 
see that PSS is correlated with SSR, while TP is weakly 
correlated with both PSS and SSR. When examining the 
correlation among the 17 segments for PSS, SSR, and 
TP, respectively, we divide the 17 segments into apex, 
apical, mid-cavity, and basal levels based on the AHA 

Fig. 1 Flowchart of the two-step stacking method. The testing set of size 64, named “Testing”, is used to evaluate the proposed method. The 
validation set of size 72, named “Validation 0”, is used to train the second-step stacking weights w∗

k
, k = 1, ...., 10 in Eq. (4). The rest set of size 288 is 

randomly divided into a first-step training set (named “Training 1” through “Training 10”) of size 230 and a first-step validation set (named “Validation 
1” through “Validation 10”) of size 58 to train the 14 individual classifiers c(k)

l
, l = 1, ..., 14 and first-step stacking weights w(k)

l
, l = 1, ..., 14 in Eq. (3) for 

10 times

Table 3 p Values for the two-sample t-test of 2D-STE features

Longitudinal strain

GLPS (p value: 0.002) PSS SSR TP PSD

Epi Mid Endo

p value .024 .049 .076 .024 .041 .179 .731

Radial Strain

 SAX-AP (p value: 0.876)  SAX-PM (p value: 0.503)  SAX-MV (p value: 0.277)

Epi Mid Endo Epi Mid Endo Epi Mid Endo

p value .982 .952 .598 .663 .654 .682 .247 .175 .516
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17-segment model, as shown in panel (B) of Fig. 4. We 
can see that (1) the apex and apical levels are highly 
correlated; (2) for PSS, six segments in the mid-cavity 
level are highly correlated with their neighboring seg-
ments in the basal level; (3) for SSR, mid-cavity level 
and basal level are weakly correlated; and (4) for TP, 
the correlations among all 17 segments are higher than 
those in PSS and SSR. Based on the results of the cor-
relation study, we choose to conduct PCA on PSS, SSR, 
and TP, respectively.

Figure  3 shows the scree-plots of PCs for features 
in PSS, SSR, and TP. In each plot, we can find obvious 
“elbows”, based on which we choose the proper number 
of PCs to retain in the model. Figure 4 shows the heat-
maps of the first 3 PC loadings for PSS, SSR, and TP, 
respectively. From Fig. 4, we can see that (1) for PSS, SSR, 
and TP, the first PCs roughly represent the overall aver-
age of the 17 segments. (2) For PSS, the second PC rep-
resents the basal/mid inferoseptal, the basal/mid inferior, 
and the basal/mid inferolateral; the third PC represents 

the basal/mid anterior and the basal/mid anterolateral. 
(3) For SSR, the second PC represents the basal/mid 
anteroseptal and the basal/mid inferolateral; the third 
PC represents the basal layer. (4) For TP, the second PC 
represents the basal/mid anterior, the basal/mid ante-
rolateral, and the basal/mid inferolateral; the third PC is 
similar to the second PC. Thus we choose the first three 
PCs for PSS and SSR, and the first two PCs for TP.

Two‑step stacking
We use the R-package caret to build 19 commonly 
used classifiers. The hyper-parameters for the individ-
ual classification model are automatically tuned based 
on the cross-validation method. After 50 replicates, 
Table  4 reports the mean accuracy of all individual 
classifiers on the testing set, with the standard devia-
tion listed in the brackets. We can see that the highest 
accuracy is 71% . Based on the individual accuracy, we 
first exclude the five classifiers with the accuracy below 
60% . For the remaining 14 classifiers, we conduct the 

Fig. 2 Correlations among features. a Correlation matrix of global longitudinal strains and radial strains of apical level, papillary muscle level and 
mitral valve level. b Correlation matrix of 17 segments on PSS, SSR and TP

Fig. 3 Screeplot of PCA on peak systolic strain, systolic strain rate and time-to-peak
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ensemble learning method to improve the classifica-
tion accuracy. Since there is no significant difference 
among the performance of the remaining 14 models, 
the question then is how to balance “model accuracy” 

and “model diversity” in ensemble learning? To answer 
this question, we consider the traditional weighted 
voting method, traditional model stacking, and the 
proposed two-step stacking on three best-perform-
ing individual models with accuracies above 70% , and 
compare the results with those on all the 14 remain-
ing models. The results of 50 replicates are shown in 
Table 5, with Fig. 5 showing the ROC curves. In Fig. 5, 
the purple lines present each individual model, the red 
lines represent the traditional weighted voting method, 
the blue lines represent the traditional stacking model, 
and the black lines represent our two-step stacking 
model. For the three ensemble learning methods, the 
solid lines represent the ensemble on all 14 models, 
and the dashed lines represent the ensemble on the 

Fig. 4 a Heatmaps of contributions of 17 segments in first three PCs of peak systolic strain, systolic strain rate and time-to-peak. Column from left 
to right represents the first PC to the third PC respectively, and the top row represents PSS, the middle row represents SSR and the bottom row 
represents TP. b Bullseye plot of the AHA 17-segment model

Table 4 Mean testing accuracy of individual classification 
models after 50 replicates with standard deviation in the brackets

Model Accuracy

logistic regression 67.7%(0.034)

penalized logistic regression 70.8%(0.022)

cumulative probability model 68.6%(0.035)

random forest 59.2%(0.034)

weighted subspace random forest 59.3%(0.033)

SVM with class weight 70.2%(0.043)

SVM with polynomial kernel 66.3%(0.041)

SVM with radial kernel 63.7%(0.041)

K-nearest neighbor 58.2%(0.037)

LDA 69.6%(0.048)

sparsed LDA 58.8%(0.036)

naive Bayes 64.4%(0.024)

Bayes generalized linear model 68.0%(0.031)

Gaussian process with polynomial kernel 70.1%(0.035)

Gaussian process with radial kernel 65.2%(0.029)

Neural network 62.8%(0.043)

Monotone multi-layer perceptron neural network 69.2%(0.026)

model average neural network 65.1%(0.035)

stochastic gradient boosting 57.8%(0.027)

Table 5 Mean testing accuracy and the AUC of ensemble 
learning methods after 50 replicates with standard deviation in 
the brackets

Best results are bolded

Model Accuracy AUC 

Two-step stacking (14 models) 87.7%(0.023) 0.904 (0.026)
Two-step stacking (3 models) 79.4%(0.028) 0.822 (0.030)

Traditional stacking (14 models) 81.8%(0.033) 0.854 (0.034)

Traditional stacking (3 models) 76.7%(0.038) 0.798 (0.037)

Weighted voting (14 models) 73.3%(0.033) 0.751 (0.040)

Weighted voting (3 models) 71.7%(0.035) 0.728 (0.037)

Two-step stacking with GLPS only 63.3%(0.034) 0.674 (0.047)
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three “best-performing” models. We then interpret the 
results from the following three aspects. 

1. The stacking methods outperform the weighted vot-
ing methods. Such an observation indicates that the 
stacking method can combine the individual results 
in a more efficient way.

2. The 3-model weighted voting only slightly improves 
the accuracy compared with the individual models. 
It indicates that the three models may be highly cor-
related, i.e., the diversity is not enough for a consid-
erable improvement for the ensemble. The 14-model 
ensemble methods result in a better performance 
than the 3-model ensemble methods. The results 
confirm the importance of model diversity in ensem-
ble learning, especially when models are combined 
through a more complex way in model stacking.

3. The traditional model stacking improves the classi-
fication accuracy from the 67.3% (the average accu-
racy for the individual models) to 72.5% . Through the 
proposed two-step stacking, we further improve the 
classification accuracy to an average of 87.7% on the 
testing set, with a sensitivity of 0.903 and a specificity 
of 0.843. In fact, the two-step stacking method sig-
nificantly outperforms all the other methods.

Based on [25], using GLPS can successfully predict CHD 
for NSTE-ACS patients with an AUC of 0.92. We apply 
our method on GLPS only to see if the accuracy remains. 

The results are also listed in Table 5, we can see that the 
accuracy based on GLPS only drops to 63.3% with an 
AUC of 0.67. Such a drop may be caused by the quality of 
images in the retrospective study. During the retrospec-
tive study, the data were collected during real-time medi-
cal treatment, where the priority is efficiency. Thus the 
data quality may become hard to control. In summary, 
our method shows the best diagnostic performance in 
identifying CHD patients among all the methods we 
compared. The codes for the final 14-classifier two-step 
stacking model prediction are available in the supple-
mentary materials (additional file 1).

Discussion
Clinical implication
Imaging techniques have been applied to prognosis 
and prevention to reduce morbidity and mortality [55]. 
Among all the imaging techniques, echocardiography 
is one of the most promising techniques in the cardio-
vascular field. It is noninvasive, convenient, safe, and 
effective. 2D-STE as a novel technique has its advantage 
compared with the conventional echocardiography and 
other modalities. The sub-endocardial myocardial fib-
ers are oriented longitudinally, so the longitudinal myo-
cardial function is affected primarily when ischemia is 
onset. The decrease in global longitudinal strain, which 
suggests the ventricular contractile dysfunction, occurs 
prior to ECG change. Therefore, the machine learning 
model based on features with the global longitudinal 
strain included is more efficient than the ECG. Tradition-
ally, the conventional echocardiographic parameters are 
mostly estimated by a visual assessment of the ventricu-
lar wall contraction in CHD patients. However, subtle 
abnormalities might be overlooked by human eyes [21]. 
This clinical practice renders the conventional echocar-
diography ineffective in the diagnosis of CHD in general 
and the early stage CHD in particular. Thus, the effective-
ness of conventional echocardiography is limited in CHD 
diagnosis, especially in the early stage. Since the 2D-STE 
image can detect the tiny abnormalities of the systolic 
function [25, 56], it is more promising in CHD diagnosis 
than the conventional echocardiogram.

Compared to coronary angiography, our echocardiog-
raphy-based method can be applied to almost all patients. 
Coronary angiography is the gold standard in the diag-
nosis of stenosis. However, due to its potential medical 
risks, angiography is not recommended to all patients, 
such as elder patients, or patients with other end-stage 
organ failures. 2D-STE helps rule out patients without 
coronary heart disease and avoid unnecessary coronary 
angiography. Compared with the time-consuming tests 

Fig. 5 ROC curves of 1. the ensemble learning methods on 14 
individual models, 2. the ensemble learning methods on the three 
“best-perform” models, and 3. the three “best-perform” individual 
models. The ensemble learning methods including the two-step 
stacking methods, the traditional stacking methods, and the 
weighted voting methods. The purple lines represent the individual 
models. The black lines represent the two-step stacking methods, 
the blue lines represent the traditional stacking methods, and the 
red lines represent the weighted voting methods, with the solid lines 
represents ensemble on 14 models, and the dashed lines represent 
ensemble on 3 models
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such as MRI and SPECT, our method can provide the 
diagnosis result in less time.

The potential clinical applications of the echocardi-
ography-based machine learning method are extensive. 
Clinicians are always searching for a safer and more 
effective method for the diagnosis and prognosis of 
CHD. Studies have shown that the early-stage medi-
cal intervention can reduce the mortality and morbid-
ity for CHD [57]. We believe that our method holds 
a promise to provide a more efficient and noninva-
sive early screening and diagnosis of CHD, and could 
bring a revolutionary impact on the diagnosis modality. 
Moreover, our method based on 2D-STE can also help 
in re-evaluating the recovery from ischemia after the 
first hospitalization. It can be recommended as a rou-
tine in the physical examination.

Method innovation
Our method is an ensemble learning method. The 
ensemble learning methods can be divided into three 
classes: bagging, boosting, and stacking [47]. In particu-
lar, bagging aims to reduce variance, boosting decreases 
bias, and stacking improves the prediction. Since the goal 
of this study is to improve the prediction power, we use 
the stacking method to aggregate the strengths of popu-
lar machine learning methods [48, 49]. We generalize 
the traditional stacking method to a two-step stacking 
method to achieve a trade-off between the model diver-
sity and accuracy in ensemble learning. The first-step 
stacking aggregates diversified classifiers to improve the 
individual prediction; the second-step stacking combines 
multiple first-step stacking classifiers under randomly 
partitioned training sets to weaken the effects of the 
wrong model aggregation and the poor performance of 
individual classifiers.

Limitations
Our study is a single-center study. The data are collected 
from the same medical system. Different echo-cardio-
graphic inter-vendors and post-processing algorithms 
were not applied. The single data-collecting system and 
the relatively small dataset may increase the instabil-
ity of the models and lead to low generalizability of the 
results. We have reached an agreement with other hospi-
tals to collect more data from multiple medical centers. 
There are potential difficulties in analyzing multi-center 
data, such as the concerns on the data privacy and data 
heterogeneity. To overcome these two major concerns, 
we consider applying the decentralized system. Fur-
thermore, with the multi-center data, we can extend 
the method to an adaptive learning process so that the 

model can automatically update when bringing in new 
samples. Another limitation is that the speckle tracking 
analysis can not be conducted automatically. The subjec-
tive effects of different physicians might also affect the 
final prediction. In addition, when processing low-qual-
ity images, EchoPac can not recognize the epicardial or 
endocardial border. Therefore, it may bring certain biases 
to the results. We are now developing an automatic 
image quality-control and tracing technique for analyz-
ing echocardiograms. By reducing the user intervention 
in both image feature extracting and classification analy-
sis, we can effectively minimize subjective errors.

Future works
With the advantages of machine learning methods in 
accelerating the image-based diagnostic process, we 
explore the potential use of machine learning in echocar-
diographic analysis in the following two aspects. 

1. Image quality control The machine learning meth-
ods are promising in identifying standard views of 
echocardiograms [15, 16, 35, 36]. When combin-
ing with the statistical hypothesis test, we can apply 
the machine learning methods in echocardiographic 
quality control. Specifically, the testing method, espe-
cially the non-parametric test, can quantify the dif-
ferences between individual echocardiograms and 
the “standard” echocardiograms utilizing the fea-
tures extracted by machine learning methods [58, 
59]. Based on the quantified differences, the quality 
control method can weed out the low-quality images 
automatically, thus can improve the accuracy in the 
image-based diagnosis.

2. Image segmentation and tracing Existing image seg-
mentation methods require a large quantity of anno-
tated training datasets [35]. Labeling images, espe-
cially medical images, is super labor-intensive and 
time-consuming. The application of optimal trans-
port, deformation mapping, and transfer learning can 
help develop a reference-based image segmentation 
and tracing method. Such a method can detect cer-
tain local structures in echocardiograms through a 
“transfer” from the typical annotated references [60]. 
The volume of the training set thus can be reduced to 
a size that can be processed in practice.

Conclusion
Our method enjoys the following practical advantages 
in screening CHD. First, our method shows a good diag-
nostic performance in identifying CHD patients, i.e., 
87.7% (accuracy), 90.3% (sensitivity), 84.3% (specificity). 
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Second, compared with some conventional CHD diagno-
sis technologies, e.g., coronary angiography, our method 
is noninvasive. Our predictive model only requires the 
2D-STE features and some commonly used clinical fea-
tures. Third, compared with traditional time-consuming 
tests, e.g., MRI and SPECT, our method can provide 
diagnosis results in significantly less time. In summary, 
our method holds a promise to provide a more efficient 
and noninvasive early screening and diagnosis of CHD.
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