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This paper studies the estimation of large-scale optimal transport map (OTM), which is a well-

known challenging problem owing to the curse of dimensionality. Existing literature 

approximates the large-scale OTM by a series of one-dimensional OTM problems through 

iterative random projection. Such methods, however, suffer from slow or none convergence in 

practice due to the nature of randomly selected projection directions. Instead, we propose an 

estimation method of large-scale OTM by combining the idea of projection pursuit regression 

and sufficient dimension reduction. The proposed method, named projection pursuit Monge 

map (PPMM), adaptively selects the most “informative” projection direction in each iteration. 

We theoretically show the proposed dimension reduction method can consistently estimate the 

most “informative” projection direction in each iteration. Furthermore, the PPMM algorithm 

weakly convergences to the target large-scale OTM in a reasonable number of steps. 

Empirically, PPMM is computationally easy and converges fast. We assess its finite sample 

performance through the applications of Wasserstein distance estimation and generative 

models.

Abstract

Motivation

Denote ෠𝜙 as an estimator of 𝜙∗. Suppose one observe 𝑿 = 𝑥1, … , 𝑥𝑛
𝑇 ∈ ℝ𝑛×𝑑 and 𝒀 =

𝑦1, … , 𝑦𝑛
𝑇 ∈ ℝ𝑛×𝑑 from 𝑝𝑋 and 𝑝𝑌, respectively. The Wasserstein distance 𝑊𝑝 𝑝𝑋,𝑝𝑌 thus 

can be estimated by:
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Projection pursuit method. Projection 

pursuit regression is  widely-used for 

high-dimensional nonparametric regression 

models. 

Sufficient dimension reduction. Sufficient

dimension reduction for regression aims to 

reduce the dimension of 𝑋 while 

preserving its regression relation with 𝑍.

Estimation of the most “informative” projection direction. Consider the problem of 

estimating an OTM. We regard the input as a binary-response sample, and we utilize the 

sufficient dimension reduction technique to select the most “informative” projection direction. 

The metric to quantify the “discrepancy” depends on the choice of sufficient dimension 

reduction technique. 

Projection pursuit Monge map Algorithm. Now, we are ready to present our estimation 

method for large-scale OTM. In each iteration, the PPMM applies a one-dimensional OTM 

following the most “informative” projection direction selected by the Algorithm 1.

Computational cost of PPMM. In Algorithm 2, the computational cost mainly resides in the 

first two steps within each iteration. The overall computational cost of Algorithm 2 is of order 

𝑂(𝐾 𝑛𝑑2 + 𝐾𝑛 log 𝑛 ).

Problem setup and methodology

When 𝑑 = 10, RANDOM and SLICED converge to the ground truth but in a much slower 

manner. When 𝑑 = 20 and 50, neither RANDOM nor SLICED manages to converge within 

200 iterations. PPMM is the only one among three that is adaptive to large-scale OTM 

estimation problems.

Estimation of optimal transport map

MNIST. We first study the MNIST dataset. 

First, we visually examine the fake sample 

generated with PPMM. In the left-hand panel, 

we display some random images generated 

by PPMM. The right-hand panel shows that 

PPMM can predict the continuous shift from 

one digit to another.

The Google Doodle dataset 1. Predict the continuous shift between two categories. 2. 

Quantify the similarity between the generated fake samples by calculating the FID  in the latent 

space. The results in justify the superior performance of PPMM over existing projection-based 

methods.

Application to generative models

Recently, optimal transport map (OTM) draws great attention in machine learning, statistics,

and computer science. Nowadays, generative models have been widely-used for generating

realistic images, songs and videos. OTM also plays essential roles in various machine learning

applications, say color transfer, shape match, transfer learning and natural language processing.

Our contributions. To address

the issues mentioned above, this

paper introduces a novel

statistical approach to estimate

large-scale OTMs. The proposed

method, improves

the existing projection-based

approaches from two aspects.

First, PPMM uses sufficient dimension reduction technique to estimate the most “informative”

projection direction in each iteration. Second, PPMM is based on projection pursuit. The idea

is similar to boosting that search the next optimal direction based on the residual of previous

ones.

Table 2. The FID for the generated samples (lower the better), with standard deviations presented in parentheses
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Table 1. The mean CPU time (sec) per iteration, with standard deviations presented in parentheses

Problem setup and methodology
Optimal transport map and Wasserstein distance. Denote 𝑋 ∈ ℝ𝑑 and 𝑌 ∈ ℝ𝑑 as two 

continuous random variables with probability distribution functions 𝑝𝑋 and 𝑝𝑌, respectively. 

The problem is to find a transport map 𝜙:ℝ𝑑 → ℝ𝑑 such that 𝜙 𝑋 and 𝑌 have the same 

distribution. A standard approach is to find the optimal transport map 𝜙∗ that satisfies:

𝜙∗ = inf
𝜙∈Φ
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where Φ is the set of all transport maps, || ⋅ || is the vector norm and 𝑝 is a positive integer. 

The Wasserstein distance (of order 𝑝) between 𝑝𝑋 and 𝑝𝑌 is then define as:  

𝑊𝑝 𝑝𝑋, 𝑝𝑌 = inf
𝐽∈𝚥 𝑋,𝑌
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where 𝚥(𝑋, 𝑌) contains all joint distributions J for (X,Y) that have marginals 𝑝𝑋 and 𝑝𝑌.
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