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Abstract

Sufficient dimension reduction is used pervasively as a supervised dimension
reduction approach. Most existing sufficient dimension reduction methods are
developed for data with a continuous response and may have an unsatisfactory
performance for the categorical response, especially for the binary-response. To
address this issue, we propose a novel estimation method of sufficient dimension
reduction subspace (SDR subspace) using optimal transport. The proposed method,
named principal optimal transport direction (POTD), estimates the basis of the
SDR subspace using the principal directions of the optimal transport coupling
between the data respecting different response categories. The proposed method
also reveals the relationship among three seemingly irrelevant topics, i.e., sufficient
dimension reduction, support vector machine, and optimal transport. We study the
asymptotic properties of POTD and show that in the cases when the class labels
contain no error, POTD estimates the SDR subspace exclusively. Empirical studies
show POTD outperforms most of the state-of-the-art linear dimension reduction
methods.

1 Introduction

Sufficient dimension reduction (SDR) has been one of the most popular linear dimension reduction
frameworks in statistics 35, 13, 30]. Given a predictor X € RP and a response Y € R, sufficient
dimension reduction aims to find a projection matrix B € RP*? (p > ¢) such that

Y 1L X|BTX, (1)

where L denotes statistical independence. Model (1)) indicates that the projected predictor BY X
preserves all the information about Y contained in X. The column space of B, denoted as S(B)
is called a sufficient dimension reduction subspace (SDR subspace). One special property of the
sufficient dimension reduction framework is that the model () does not assume any specific rela-
tionship between Y and X. Nowadays, sufficient dimension reduction has played crucial roles in
various statistical and machine learning applications, such as classification problems [28], online
learning [9]], medical research [44], and causal inference [39]]. Some popular sufficient dimension
reduction techniques include sliced inverse regression (SIR) [35], principal Hessian directions (PHD)
[36], sliced average variance estimator (SAVE) [[L5]], directional regression (DR) [33], among others.

Despite its popularity, the success of most existing SDR methods highly depends on the restricted
conditions that are imposed on the predictors. In practice, these methods may fail to identify the
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true SDR subspace when the conditions are not met. We illustrate such a phenomenon through an
example that was originally introduced in [37] as a clustering problem. The example includes two C-
shaped trigonometric curves with random Gaussian noise tangle with each other in a two-dimensional
subspace embedded in R0, There are two classes, one for each curve:

I) X1 =20cosf+71+1, Xo = 20sin 0+ Zs, where Z1, Z, and 0 are independent generated
from N(0, 1), NV(0,1), and N (mr, (0.25m)?), respectively; X3, ..., X1o are independent
generated from N (0, 1).

) X1 =20cosf + Z1,Xs = 20sin 6 + Zs, where Z1, Zo, and 6 are independent generated
from A(0,1), N(0,1), and N(0, (0.257)?), respectively; X3, ..., X1o are independent
generated from N (0, 1).

For each class, we first generate a sam-
ple of size 300 and then standardize
the sample. It is clear that the SDR
subspace of this example is the space
spanned by (e1, e2), where e; is a col-
umn vector with the j-th element be-
ing 1 and O for the rest. Figure [T(a)
shows the first two predictors of the
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Figure 1: Results for different SDR methods on a 10D binary-
d . response example. The first two predictors of the data are illustrated
ata, where two classes are illustrated . . X )

. . . in panel (a), where different color represent different classes. Panel
by different colors, respectlyely. Fig- (b), (c), and (d) show the first one or two directions estimated by
ure [T{b) shows the data projected on  §IR SAVE, and POTD, respectively. POTD is the only one among
the SIR direction. Only one projec- three that can effectively recover the SDR subspace.
tion direction can be estimated by SIR
since the response is binary. Figure[I[c) shows the data points projected on the plane spanned by
the first two directions estimated by SAVE. Note that both of these two classic SDR techniques fail
to provide a decent estimation of the SDR subspace. Such an observation can be attributed to the
fact that SIR and SAVE only utilize the first-moment and the second-moment information of the
predictors. As a result, they are not able to recover the SDR subspace when the first two moments of
the predictors respecting different classes are identical.

Our contributions. To overcome the aforementioned limitation of the classic SDR methods, we
propose a novel approach for estimating the SDR subspace, primary for the data with a categorical
response. The proposed method, named principal optimal transport direction (POTD), forms the basis
of the SDR subspace using the principal directions of the optimal transport coupling between the data
that are respecting different response categories. POTD does not rely on the moment information
of the predictors and is able to provide a more decent estimation of the SDR subspace, as shown in
Fig.[I(d). We reveal the close relationship between the proposed method and a well-known SDR
approach, named principal support vector machine (PSVM) [31]. This approach first utilizes support
vector machine (SVM) to find the optimal hyperplane that separates the data respecting different
response categories, then use the normal vectors of this hyperplane to construct the SDR subspace.
We demonstrate that the "displacement vectors," which respecting the optimal transport map between
the data that are respecting different response categories, are highly consistent with the normal vectors
of the aforementioned hyperplane. We propose to use these displacement vectors as surrogates for the
desired normal vectors to construct the SDR subspace, thus avoid estimating the optimal hyperplane.
Theoretically, we show the proposed method can consistently and exclusively estimate the SDR
subspace for the data with a binary-response when the class labels contain no error. To the best of
our knowledge, our work is the first approach that can achieve the full SDR subspace instead of
a partial SDR subspace obtained by alternative approaches, under mild conditions. We show the
advantages of POTD over existing linear dimension reduction methods through extensive simulations.
Furthermore, we show the proposed method outperforms several state-of-the-art linear dimension
reduction methods in terms of classification accuracy through extensive experiments on various
real-world datasets.

2 Preliminaries

Sufficient dimension reduction. In this paper, we consider the sufficient dimension reduction
Model in classification problems, i.e., the response Y € {1,...,k} indicating k classes in
the data. Recall in Model (T)); sufficient dimension reduction methods aim to seek a set of linear



combinations of X, i.e., BT X, such that the response Y depends on the predictors X only through
BT X. Since the projection matrix B in Model (1) is not unique, the target of interest in SDR is not
on B itself, but the space spanned by the columns of B, denoted as S(B). The central subspace,
denoted by Sy|x, is the intersection of the spaces spanned by all possible B that satisfy Model
and hence has the minimal dimension among all such B’s (Cook, 1998b). It is known that Sy x
exists uniquely under mild conditions [13]]. We call an SDR method exclusive if it induces an SDR
subspace that equals to the central subspace. It is known that some popular SDR methods, e.g., SIR,
SAVE, and DR, are exclusive under certain conditions [30].

There is a vast literature on SDR methods [40, 169, 41} 66], the majority of which are developed for
data with continuous response. Although some of them work fairly well for categorical response
data, the performance of some classic SDR methods degrades significantly for binary-response
data. For example, SIR can identify at most one direction in binary classification since there are
only two slices available. As a result, SIR is unable to recover the full SDR subspace when one
direction is insufficient to separate two classes, say the example in Fig.1. For another example, SAVE
is known for its inefficient estimation when the response is binary [33], and we refer to [14] for
more discussion. There exist other SDR methods in the literature that are designed for categorical
response data [52,|53]. The performance of these methods, however, depends on relatively strong
assumptions that are imposed on the predictors, and they may not recover the full SDR subspace
in some applications. There also exist some nonlinear dimension reduction methods to tackle the
classification problems [31,58]. These nonlinear methods are beyond the scope of this paper.

Optimal transport methods. To overcome the aforementioned limitations of the existing SDR
methods, we develop a novel SDR approach for data with a categorical response, utilizing optimal
transport methods. Optimal transport has been widely studied in mathematics, probability, and
economics [22},155,|51]]. Recently, as a powerful tool to transform one probability measure to another,
optimal transport methods find extensive applications in machine learning [3}116} 48l 14,1101123} 421 47]],
statistics [18} 111145, 1611 143]], computer vision [22} 49,155 48l [19]], and so on.

Let Z(RP) be the set of Borel probability measures in R?, and let

)| [ 1elPduta) < oc}.

Consider two probability measures p,v € P5(RP). For any measurable set 2 C RP, we define
Du(p) () = (¢~ 1(€2)). Let  be the set of all the so-called measure-preserving map ¢ : RP — R?,

such that ¢4(u) = v and ¢;1(u) = p. Let || - || be the Euclidean norm. Among all the maps in P,
the optimal one respecting to Lo transport cost is defined as

¢—M/w— a)|2du(a). @)

Formulation (2)) is usually called the Monge formulation and its solution ¢* is usually called the
optimal transport map, or Monge map. The vector a — ¢*(a) is called the displacement vector of
the optimal transport map ¢* on a. One limitation for the Monge formulation (2)) is that, it may be
infeasible in some extreme cases, say, when p is a Dirac measure but v is not. To overcome such an
limitation, Kantorovich considered the following set of "couplings" [56]],

M(p,v) ={mre ZR? xRP) s.it. V Borelset A,B CRP,
(A x RP) = p(A), w(RP x B)=wv(B)}.

Py(RP) = {ue P(RP)

Kantorovich then formulated the optimal transport problem as finding the optimal coupling, i.e., the
joint probability measure 7 from II(u, v/), that minimizes the expected cost,

= inf /||9E*y|| dn(z,y). 3)
mell(p,v
Formulation (3) is usually called the Kantorovich formulation and its solution 7* is called the optimal
transport plan or optimal coupling. Consider the cases when both p and v are continuous probability
measures that vanish outside a compact set, and both measures have continuous densities with respect
to the Lebesgue measure. Under the above setups, the celebrated Brenier theorem [7] guarantees
the existence of the Monge map, and it is shown that the solution of the Monge formulation (2) is
equivalent to the solution of the Kantorovich formulation (3)) [27, 26]. For mathematical simplicity,



we assume the Monge map exists when studying the theoretical properties of the proposed method.
However, the proposed algorithm is developed upon the optimal coupling, and it does not require the
existence of the Monge map. Furthermore, the numerical results in Section 5 indicate the proposed
method empirically works well when the Monge map does not exist.

3 Motivation and Methodology

To motivate the development of the proposed method, we first re-examine a popular SDR approach,
named principal support vector machine (PSVM). Such an approach is first proposed in [31]], and
is further developed in [5} 167} 52| 153]]. Recall that SVM is a classification method that draws an
optimal hyperplane to separate the data respecting different categories. Consider the data with the
binary-response. [31] first observed that the normal vectors of the hyperplane that learned by SVM,
are as much as possible aligned with the directions in which the regression surface varies, i.e., the
directions that form the SDR subspace. Consequently, these normal vectors can be naturally utilized
to construct the SDR subspace. In particular, the authors in [31]] proposed to combine these normal
vectors by principal component analysis to form the basis of the SDR subspace.

We provide an example to illus-
trate the idea of PSVM. Fig. [2J[a)
shows a synthetic 3D sample
with a binary-response, and the
subsample respecting different
response categories are marked
in blue and red, respectively.
For these two subsamples, their
marginal distributions of e; have
the same mean and different vari-
ances, their marginal distribu- Figure 2: Tllustration for PSVM and POTD on a 3D synthetic binary-
tions of e, have the same vari- response dataset. The data respecting difference response categories are
ance and different means, and {narke((llt‘?ysb\lllll\i an(ii rt(}:]d, respe;:tlve:y. Pz}riil' (;) shovlvs the h}]/psrlpl(eime
. . PO, earned by , and the normal vectors of this hyperplane are labeled as
g;zlihnelasgg;;::l gﬁg;::ggg;;ftﬁg dashed arrows. Panel (b) shows all the displacement vectors of the optimal
) . > .7 transport map between two classes. We observe that the displacement
?;I;nselg):)l;agz Ofeth)ls example is vectors in (b) show highly consistent patterns as the normal vectors in (a).
1,€2).

The PSVM approach first uses SVM to calculate the optimal hyperplane that separates the two classes.
The hyperplane is illustrated by the grey curved surface in Fig. Ja). Using the principal component
analysis, the normal vectors of this hyperplane, shown as the dashed arrows, are then used to form
the basis of the SDR subspace. The PSVM approach is superior to the classic SIR and SAVE method
in this example. Note that SIR and SAVE only utilizes the first-moment and the second-moment
information of the predictors, respectively. Neither SIR and SAVE could successfully recover the full
SDR subspace in this example, since the former can only identify the subspace spanned by e, and the
latter can only identify the subspace spanned by e;. Despite the advantages, one limitation for the
PSVM approach is that the explicit form of the desired normal vectors are only available for linear
SVM but are not available for kernel SVM. Although several nonlinear dimension reduction methods
are developed, still lacking are the linear dimension reduction methods for the cases when the data
respecting different response categories are not linearly separable, e.g., the example in Fig.1(a).

To address the aforementioned issue, we propose to utilize the optimal transport technique to
construct surrogates for the desired normal vectors. The key intuition is that, the displacement
vectors of the optimal transport map that maps one subsample to the other subsample are as much as
possible orthogonal to the hyperplane that can best separate these two subsamples. As a result, these
displacement vectors are highly consistent with the normal vectors of the hyperplane estimated by
SVM. For illustration, we plot the displacement vectors respecting the synthetic dataset in Fig. [2(b),
and it is clear that these vectors show highly consistent patterns as the normal vectors in Fig. [2(a).
Consequently, using optimal transport, we can obtain the desired vectors directly and explicitly,
without calculating the optimal hyperplane. Analogous to the PSVM approach, we propose to
combine the displacement vectors by principal component analysis to form the basis of the SDR
subspace. To extend the proposed method for binary-response cases to multi-class response cases,



two popular strategies could be used, namely the one-vs-one strategy and the one-vs-rest strategy.
We opt to adopt the former in this paper, and we find using the latter yields similar results.

We now provide more details of the proposed method. Let & > 2 be the number of response categories,
X € R™*? be the pooled sample matrix, and we assume that XX = I, without lose of generality.
Let n; be the number of samples respecting to the i-th class, X ;) € R™*? be the subsample matrix
respecting to the i-th class, and a; = (a1,...,a:n,)T be the given weight vector corresponding
to X ;). Without loss of generality, we assume the L; norm of a; equals one, @ = 1,..., k. Such
an assumption ensures that the optimal transport problems, between the data respecting difference
response categories, are valid. In the cases when {a;}*_, do not have the same value, one can simply
replace {a;}*_; by {a;/||a;||1}}_, before implementing the proposed method.

Foranys,j € {1,..., k}, we calculate the empirical optimal transport coupling matrix G;; € R™*"™
between the weighted samples (X(;), a;) and (X(;), a;). The matrix G; is then used to construct
the "displacement matrix" A;; € R™ P,

Ay = diag(a;) X ) — Gi; X (),

where diag(a;) € R™*™ is the diagonal matrix such that its diagonal vector equals a;. In the
literature, G;;X ;) is usually termed the barycentric projection of X ;. In particular, let ¢* be
the empirical optimal transport map between (X(;), a;) and (X;), a;), if it exists. It is thus easy

to check that, for | = 1,...,n;, the I-th row of Ay; equals a; (X ;) — ¢*(X(;)))T, which is the
displacement vector of the [-th observation in X ;) weighted by a;.

Next, to apply the one-vs-one strategy, we let A ;) € R™i(k=1)xd pe the matrix that vertically stacks

all the Ayjs,7=1,...,4—1,i4+1,..., k. Furthermore, we let A € R™F=1)%d be the matrix that
vertically stacks all the A(;ys, @ = 1,..., k. The final SDR subspace then can be constructed using
the leading right singular vectors of A. Algorithm [I|summarizes the proposed method.

Algorithm 1 Principal Optimal Transport Direction (POTD)

Input: X € R"*4, Y € {1,...,k}, a € R", the structure dimension r
for:in1l: k do
for jin{1,...,i—1,i+1,...,k} do

Gij  OT[(X (i), @), (X5, @), cost = || - 1I%]
A = diag(a;)X ) — G4 X))
end for
A
end for
Aq)
A= ...
Ak
Output: v, ..., v,,ie., the first r right singular vectors of A

Computational cost. In practice, the coupling matrix G;; in Algorithm 1 can be calculated using
the Sinkhorn algorithm [[17]. In the cases when all k classes have roughly similar sample sizes, the
computational cost for calculating G; is at the order of O((n/k)?log(n/k)p). The total number of
coupling matrices that need to be calculated is k(k — 1), and thus the overall computational cost for
optimal transport is of the order O(n? log(n)p). Furthermore the computational cost for calculating
the SVD for the matrix A is at the order of O(knp?). Thus, the overall computational cost for
Algorithm 1 is O(n? log(n)p + knp?). Besides, one may use other optimal transport algorithms, like
Greenkhorn [2] and Nys-Sink [1]], for potentially faster calculations.

Estimation of structure dimension. In Algorithm 1, we assume the structure dimensional r is
known. This information, however, may not be available in practice. In the literature of sufficient
dimension reduction, there exist several methods to determine r. For example, a chi-squared test was
developed in the SIR method [35]. However, the extension of the test beyond SIR is still lacking.
The BIC-type approach is another widely-used procedure [68],169]. Neither of these approaches is
applicable to our algorithm since they are developed based on the asymptotic normality, which is



rarely the case in our setting. Based on our empirical studies, we suggest using the cumulative ratio
of the singular values to choose the structure dimension [25]. Such a procedure is commonly used by
classical dimension reduction methods such as principal component analysis.

4 Theoretical results

For ease of exposition, throughout this section, we only consider the sufficient dimension reduction
model (1) with binary-response cases, i.e., Y € {0,1}. We also assume the optimal transport map
exists. We propose a predictor of Y, called Y*, and study some properties of Y * from the perspective
of the optimal transport theory.

Now we reformulate the binary-response sufficient dimension reduction problem as a transport
problem. Without loss of generality, one class of sample is called the source sample, and the other
class of sample is the target sample. Given the pooled sample consisting of both the source sample
and the target sample, we randomly take a sample point, say X, and its associated label (response)
Y, which equals zero if the sample point X is from the source sample and one otherwise. Here, Y
follows a Bernoulli distribution, where Y is equal to one with the probability P(X). Given P(-), we
employ the predictor Y* = I(P(X) > 0.5), where I(-) is the indicator function, to predict label Y’
of the corresponding sample point X . Obviously, for error-degenerated cases, i.e., when all class
labels have been correctly predicted, we have Y* =Y.

Analogous to the central subspace Sy |y, we now define the subspace Sy«|x. Suppose there exists
some B € RP*" such that

Y* U X|BTX. 4)
The subspace Sy~ |x is defined as the intersection of the spaces spanned by all possible B that
satisfy equation (EI) Note that one has Sy« x C Sy|x, since Y* can be represented as a function of
E(Y|X), which equals P(X). Consider the case that the binary-response Y is a function Y (Y*, ¢€)
of Y* conditioning on X = « and a random variable €, which follows a Bernoulli distribution and is
independent of the predictor X, indicates whether the response has been correctly observed as the
true class label. We thus have Sy|x C Sy«|x. Consequently, Y and Y contain exactly the same
information about X in this situation. This is to say, we have Sy-|x = Sy |x under the condition

Y 1L X|Y*. (5)

Specifically, for the binary outcome data, when one explanatory variable or a combination of
explanatory variables can perfectly predicts all the labels, condition (3)) naturally holds. This is known
as the "separation” property in statistics, and we refer to [29, 24} 50] for more detailed discussion and
general view of the concept of "separation”. Consequently, we have Sy« x = Sy |x as long as the
data enjoys the "separation" property.

Let 11 and v be the probability measures of X|Y™* = 1 and X|Y™* = 0, respectively. Let ¢* be the
optimal transport map from the set ® = {¢ : R? — RP|pu(u) = v; qS;l(u) = p}. We consider the
so-called "second-order displacement matrix" of ¢*, which is defined as

2= [ (- 6000) (- 0)0) dux) ©

Let Ay > ... > )\, be the eigenvalues of 3. Given an integer ¢ < p, let V. be the matrix whose
columns are the first ¢ eigenvectors of matrix ¥, i.e., V. = (v1,...,v.) € RP*€ and its orthonormal
columns satisfy 3v; = Ajv; for j = 1,..., c. To avoid trivial cases, we only consider the scenarios
that p > 4 in this section. We now present some essential regularity conditions for our main results.

(H.1) The subspace Sy | x exists and is unique.

(H.2) Let r be the structure dimension, i.e., the dimension of Sy« |x. Suppose A, — A1 > ¢ for
some d > 0, and A\, 1 = —oo for simplification.

(H.3) Suppose{(Y;, X;)}?_, are independent and identically distributed. The probability distribu-
tions of both X|Y* = 1 and X|Y* = 0 have positive densities in the interior of their convex
supports and have finite moments of order 4 4  for some § > 0.

(H.4) Let N(u,e¢,7) be the minimal number of e-balls whose union has p measure at least 1 — 7.
We assume N (p, €, €2/ (P=4) < ¢ P and N (v, €, 2P/ (P=)) < 7P,



(H.5) Let ng and ny be the number of observations such that Y* = 0 and Y* = 1, respectively. We
assume ng/(ng + n1) — C, for some constant C' € (0,1), as n = ng + ny — oo.

Condition (H.1) naturally holds when classification probability P(X) can be represented as a function
of BTX, for some B € RP*", up to some unknown latent factors which are independent of X.
This is quite common under the logistic regression setting. The so-called eigen-gap condition (H.2),
ensuring that the signal associated with the largest r eigenvalues is separable from the noise associated
with the rest eigenvalues, is a quite common assumption in the statistical learning literature, see [60].
Conditions (H.3)—(H.5) are the convergence conditions of the estimated optimal transport map and
are widely used in the optimal transport theory, see [18}45]]. We now present our main theorem, the
proof of which is relegated to the Supplementary Material.

Theorem 1. Let ¢ be the optimal transport map under the assumptions (H.1) — (H.2), we have
S(V;) =Sy« x C Syx,
where S(V,.) is the column space of a matrix V..

Theorem|[I|indicates that one can recover the subspace Sy « X via the column space of V., i.e, the
space spanned by the first 7 eigenvectors of 3. Recall that we have Sy« x = Sy|x as long as the
class labels contain no error, or the data enjoys the "separation” property. In those cases, Theorem|I]
provides a theoretical guarantee to recover the SDR subspace exclusively.

In practice, optimal transport map ¢* and matrix ¥ need to be estimated from the data. Let $*
be the estimated optimal transport map, & = nyH(X — o (XNT(X — o* (X)), be the empirical
second-order displacement matrix with eigenvalues Xl >...> Xp, and \A/',. = (v1,...,0,) € RP*"
be the matrix whose columns are the first r eigenvectors of 5.
Theorem 2. Assume assumptions (H.2)—(H.5) hold. We have

[sin(V, Vo)l = [Py, Py || = Op(n='/7),

where || - || p denotes the Frobenius norm, Py is the projection matrix on the column space of V.,
and Pg; , is the projection matrix on the orthogonal complement of column space of V.

Theorem 2 states that column space of \A/r, the space spanned by eigenvectors of s, converges to the
column space of V., the central dimension reduction subspace Sy «|x.

Based on the discussion above, the space Sy« |x can be recovered by the optimal transport map
¢* and its corresponding displacement matrix 3. Note that when Y* = Y/, the space Sy« |x is
equivalent to the space Sy|x. Recall that we have Y* = Y in the error-degenerated cases, which
are quite common in practice. For example, in image classification, one may assume all images are
correctly labeled. For simplicity, we assume Y* = Y in the next section.

S Numerical experiments

Simulation studies. We evaluate the finite sample performance of the proposed POTD method on
synthetic data. For comparison, we consider fifteen popular supervised linear dimension reduc-
tion methods: AMMC[38]], ANMM]57], DAGDNE[20]], DNE[63]], ELDE[21]], LDE[12], LDP[64],
LPFDA[65], LSDA[S8], MMCJ[34], MODP[62]], MSD[54], ODP[32], SAVE[15]], PHD[36], where the
first thirteen are implemented in R package Rdimtools and the last two are implemented in dr. All
parameters are set as default. We did not consider SIR [35]] here since the dimension of the true SDR
subspace in our studies is larger than one, while SIR can estimate at most one direction for binary
classification problems.

Throughout the simulation, we set n = 400 and p = 10, 20, 30. We generate the binary-response
data from the following four models:
I: Y = sign{sin(X;)/X3 + 0.2¢};
II: Y =sign{(X; +0.5)(Xs — 0.5)% + 0.2¢};
II: Y = sign{log(X?)(X% + X3/2 + X3 /4) + 0.2¢};
IV: Y = sign{sin(X1)/(X2X3X4) + 0.2¢};



Table 1: Averaged space distances over 100 independent (lower the better), with standard deviations
presented in parentheses. The best result for each scenario is marked in bold.

Model-p AMMC ANMM DAGDNE DNE ELDE LDE LDP LPFDA
1-10 1.73(0.23)  0.97(0.12)  0.98(0.08) 0.37(0.13)  1.05(0.13)  1.82(0.22) 1.70(0.12) 1.65(0.21)
1I-10 1.73(0.23)  0.95(0.15) 0.91(0.12)  0.73(0.27) 0.96(0.19) 1.83(0.13) 1.77(0.13)  1.47(0.23)

1I-10 226(022) 2.42(047) 1.99(021) 2.15(0.22) 1.99(0.31) 2.78(0.31) 2.61(0.26) 2.34(0.31)
IV-10 229(024) 2.46(031) 2.19(024) 1.70(0.47) 223(0.35) 2.79(0.41) 2.46(0.22) 2.33(0.31)
1-20 1.86(0.08)  1.10(0.10)  1.10(0.05) 1.01(0.14) 1.78(0.27) 1.84(0.12) 1.89(0.06) 1.20(0.08)
11-20 1.90(0.09) 1.05(0.05) 1.04(0.06) 0.99(0.09) 1.50(0.34) 1.84(0.07) 1.89(0.07) 1.06(0.08)
1120 3.19(021)  3.14(0.26)  2.65(0.26) 2.62(0.12) 2.96(0.21) 3.30(0.17) 3.33(0.24) 3.25(0.18)
V20 321(0.22)  3.13(024) 3.16(00.20) 3.07(0.21) 3.1000.31) 3.29(0.23) 3.28(0.23) 3.25(0.21)
1-30 1.90(0.04) 1.18(0.09) 1.14(0.13) 1.16(0.13) 1.66(0.26) 1.93(0.05) 1.93(0.04) 1.15(0.07)
11-30 1.92(0.05)  1.100.04) 1.11(0.03) 1.10(0.03) 1.52(0.35) 1.93(0.04) 1.92(0.03) 1.05(0.04)
11-30 3.48(0.15) 3.34(0.19) 2.86(0.10) 2.83(0.08) 3.44(0.17) 3.47(0.17) 3.47(0.08) 3.49(0.15)
IV-30 3.50(0.16) 3.49(0.17) 3.49(0.13) 3.37(0.13) 3.52(0.13) 3.57(0.13) 3.52(0.15) 3.47(0.12)

Model.p _ LSDA MMC MODP MSD ODP SAVE PHD POTD
10 1.02(0.08) 1.72(022) 1.55022) 1.72(021) 1.55(0.14) 1.06(0.15) 1.68(0.21) 0.66(0.13)
110 0.90(0.17) 1.70(0.23) 1.55021) 1.72(0.21) 1.55(0.17) 0.88(0.32) 1.36(0.21)  0.69(0.19)
II-10 202(029) 2.26(0.28) 2.26(0.29) 2.26(0.29) 2.27(0.24) 2.01(0.24) 2.01(0.29) 1.61(0.18)
IV-10 2.30(0.29) 2.28(0.29) 2.27(0.29) 2.28(0.29) 2.27(0.30) 2.39(0.30) 2.39(0.29)  1.39(0.26)
120 1.08(0.06) 1.86(0.09) 1.76(0.09) 1.87(0.06) 1.76(0.24) 1.55(0.07) 1.85(0.06) 0.85(0.07)
1120 1.03(0.03)  1.89(0.09) 1.76(0.09) 1.90(0.06) 1.76(0.11) 1.00(0.10) 1.79(0.06)  0.84(0.07)
1120 261(0.12)  3.25(023) 3.22(023) 3.22(024) 322(0.16) 2.49(0.16) 2.48(0.24) 2.12(0.19)
IV-20 3.15(0.19)  3.23(0.24) 3.22(024) 3.23(0.24) 3.22(0.18) 3.18(0.18) 3.18(0.24)  2.36(0.26)
1-30 1.14(0.08)  1.90(0.05) 1.85(0.05) 1.90(0.05) 1.85(0.12) 1.82(0.06) 1.92(0.05) 1.00(0.06)
1130 1.07(0.03)  1.92(0.05) 1.85(0.06) 1.92(0.05) 1.85(0.10) 1.13(0.08) 1.89(0.05) 0.91(0.05)
11-30 2.82(0.11)  3.49(0.15) 3.48(0.15) 3.48(0.15) 3.48(0.10) 2.74(0.10) 2.74(0.15) 2.52(0.13)
IV-30 3.51(0.14)  3.50(0.09) 3.50(0.09) 3.50(0.09) 3.50(0.18) 3.47(0.17) 3.48(0.09) 2.80(0.13)

where X = (X7, ..., X4) follows the multivariate uniform distribution UNIF[—2, 2]? and € follows
standard normal distribution. Recall that e; is a column vector with the j-th element being 1 and
0 for the rest. The true SDR subspace S(By) is spanned by (e, ez) for model I and model II, and
is spanned by (ey, e, e3, e4) for model IIT and model IV. The true structure dimension is assumed
to be known. We use the following metric, developed in [S9], to measure the distance between the

estimated SDR subspace S (ﬁ) and the true SDR subspace S(By),

m(S(B).S(By)) = ||(T, - BB")By |-
That is to say, a smaller value of the distance associates with a more accurate estimation. Empirically,
we find other metrics, like the sine metric considered in Theorem 2, also yield similar performance.
The average space distances (the standard deviations are in parentheses) over 100 independent
replications are shown in Table[I} The smallest distance (the best result) in each setting is highlighted

in bold. We observe that the proposed POTD method provides the best results in all settings except
the first set, where the POTD provides the second-best result.

MNIST data visualization. We
now evaluate the performance of
the POTD method as a data vi-
sualization tool. We apply it to
the MNIST dataset, which con-
tains 60,000 training images and
10,000 testing images of hand- I (
written digits. We shrink each e S T R
28 x 28 image to 14 x 14 us- Figure 3: Visualization of MNIST using POTD (left) and PCA (right).
ing max-pooling and then stack

it into a 196-dimensional vector. Figure[3]displays the 2D embeddings of the testing images in the
SDR subspace learned using the proposed POTD method (the left panel) and in the first two principal
components using PCA from the training images. The colors encode different digit categories (which
are not used for training but for visualization). As expected, as a supervised dimension reduction
method, POTD yields reasonably better clusters of the data than PCA.

Classification on real-world datasets. We now compare POTD with its competitors in terms of
the classification accuracy on various real-world datasets. We consider seven multi-class real-world



datasetsﬂ Breast Cancer Wisconsin (WDBC), Letter Recognition (LETTER), Pop failures (POP),
OSAR biodegradation (BIODEG), Connectionist Bench Sonar (SONAR), and Optical Recognition of
Handwritten Digits (OPTDIGITS). From the dataset of Letter Recognition, which is a multi-class
dataset with 26 class labels, we take a sub-dataset consisting of letters { "D", "O", "Q", "C" }
(LETTER1) and a second sub-dataset consisting of letters { "M", "W", "U", "V" } (LETTER2). Each
of the two sub-datasets has four letters that are relatively difficult to distinguish.

wdbc(p=30;k=2) letter1(p=16;k=4) letter2(p=16;k=4) pop(p=18;k=2)
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Figure 4: The average testing accuracy on different datasets.

For each dataset, we replicate the experiment one hundred times. In each replication, each dataset is
randomly divided into the training set and the testing set of equal sizes. We compare POTD with all the
aforementioned fifteen competitors, where all the parameters are set as default. In addition, we also
consider the standard SIR method, where the structure dimension for SIR is set to be min(r, k — 1),
where k denotes the number of class labels in the training set. This is because the structure dimension
estimated by SIR is always smaller than k. Moreover, we also use PCA as a baseline method. For all
other methods, we consider five different choices of structure dimension r, i.e., r = {2,4, 6,8, 10}.
For each 7, the training set is first projected to a r-dimensional subspace. We then apply K -nearest
neighbor classifier to the projected training set, and K is set to be 10. We evaluate the performance of
all methods via the K -nearest neighbor classifier’s average testing accuracy, i.e., (TP + FN)/nNtest,
where T'P and F'N denote true positive and false negative, respectively, and n.s; is the sample size
of the testing set. Empirically, we find the results remain stable for a wide range of K.

Figure ] shows the average testing accuracy versus different sizes of the structure dimension. The
dimension p and the number of class label £ respecting each dataset are listed in the subtitles. We
first observe that occasionally, PCA yields better performance than some of the supervised dimension
reduction methods. For the five datasets where the number of classes £k = 2, we observe that
the method of SIR usually gives the best result. As discussed before, SIR can only estimate one
sufficient dimension reduction direction in these datasets, no matter how large the structure dimension
r is. As it may indicate in these five datasets, the extra directions estimated by other dimension
reduction methods may not be necessary to be beneficial for the downstream classifier’s classification
accuracy. Nevertheless, the extra directions may have potential benefits on data visualization or other
downstream quantitative analysis. Finally, we observe that the proposed POTD method performs
consistently better than PCA, and it outperforms most of its competitors in all cases. These results
demonstrate that POTD is very effective in estimating the SDR subspace for the data with a categorical
response. Note that the classification problem considered here is a favorable case for dimension
reduction; thus, it warrants the asymptotic convergence of all dimension reduction methods. The

results in Fig. [ indicate that even for such a simple setup, our method can work as well as its
competitors.

'All the datasets are downloaded from UCI machine learning repository [6]



Broader Impact

In this paper, we study the problem of sufficient dimension reduction for classification. We propose a
novel method to estimate the SDR subspace using the principal directions of the empirical optimal
transport plans. The proposed POTD method can consistently and exclusively estimate the SDR
subspace for the data with a binary-response when the class labels contain no error, or the data
enjoys the "separation” property. The proposed method could be naturally extended to the data with
continuous response. In such cases, we can first form several classes according to the values of Y. In
particular, let 51 = {x; : Y; < ¢} and S = {x; : Y; > ¢} for some constant c. We then calculate
the optimal transport plan between S; and So, and repeat the process to obtain several plans. The
displacement vectors based on these optimal transport plans are then pooled together to form the
basis of the SDR subspace using the principal component analysis.

A number of questions remain unanswered, such as (1) how does the error in the response affect the
result; (2) how does use other distance metrics in optimal transport instead of the L, norm affect
the result; (3) would the multimarginal optimal transport approach [46] be a more appealing way to
generalize the proposed method from binary-response to multi-class response than the one-vs-one
strategy; (4) when the optimal couplings are obtained from the Sinkhorn algorithm, how does the
Sinkhorn regularization parameter impacts the final dimension reduction. Additional research is
needed to answer these questions and to better understand the proposed method.

Like many existing dimension reduction studies, POTD, by its nature, is a new methodology that
aims to solve challenging high-dimensional problems. Hence, this work does not present any
foreseeable societal consequence by itself. However, POTD has the potential to be applied to many
high-dimensional data, e.g., imaging data, gene expression data, and so on. This work may speed
up these researches and hence amplify the positive and negative impacts that exist in these scientific
research fields.
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